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Abstract— Risk management is a constant and necessary practice in the daily operation of traffic systems, especially since they are 
vulnerable to everyday risks that can cause failures in their performance. The concept of risk analysis and management is therefore 
necessary in traffic management and it is important to develop strategies, methods and tools for risk management to aid decision makers 
through a systematic process based on Decision Support Systems (DSS). In this paper, we present a framework for a DSS to help Traffic 
Control Centers on the analysis of the performance risk of a transport system and the development of traffic control methods in an urban 
area. In this context we have developed a planning tool as part of the DSS for formulating, testing and selecting the near optimal traffic 
control strategy. The approach followed the concept of Conditional Value-at-Risk (CVaR) for the assessment of the network performance 
and the optimization of traffic control parameters for a signalized network. The benefits of the proposed approach were demonstrated 
through an implementation in a reference network and compared with the network performance with traffic signal settings obtained using 
TRANSYT-7F. The basic hypothesis of our proposed methodology is that traffic plans designed and optimized by minimizing the CVaR will 
offer users a lower risk of experiencing higher values of delays. This hypothesis was validated through a sensitivity analysis of 46 tests with 
different demand levels and incidents occurring at the network using the AIMSUN mesoscopic dynamic model. 

Index Terms— Conditional Value-at-Risk, Decision Support System, Dynamic Traffic Assignment, Mesoscopic Assignment, Multi-objective 
Genetic Algorithm, Risk Assessment, Traffic control optimization.  

——————————      —————————— 

1 INTRODUCTION                                                                     
ISK management is a constant and necessary practice in 
the daily operation of traffic systems. Traffic management 
centers set strategic goals, such as the reliable and effi-

cient movement of people and goods, and develop and im-
plement strategies and measures to achieve them. Internal and 
external factors and events may, however, affect the achieve-
ment of these objectives and cause failures in the systems’ per-
formance. In that respect, traffic management centers set spe-
cific indicators to measure traffic performance and develop 
decision-making systems to optimize the operation of their 
systems. The concept of risk analysis and management is 
therefore necessary in traffic management and it is important 
to develop strategies, methods and tools for risk management 
to aid decision makers through a systematic process based on 
Decision Support Systems (DSS). DSS for traffic management 
have been considered for helping Traffic Control Centers to 
address congestion problems since 1980s. FRED (Freeway Re-
al-Time Expert System Demonstration) [1] and the Santa Mon-
ica Smart Corridor Demonstration Project [2] were the first 
attempts reported in this field. Since then many DSS frame-
works for traffic management have been proposed and inves-
tigated incorporating multiagent techniques, simulation based 
techniques, fuzzy logic, neural networks, heuristic approaches, 
case-base logic, etc. (e.g.[3],[4],[5],[6],[7],[8]). 

The congestion effects at signalized networks has been the 
focus of research for many decades aiming to its mitigation by 
developing and optimizing traffic control strategies based on 

the estimation of time-dependent traffic states depicting the 
network performance though time evolution. Traffic control 
strategies can be classified, according to [9], depending on (a) 
the period which they have been designed and/ or imple-
mented: i.e. fixed-time and traffic responsive (real-time) strat-
egies; (b) the area of their implementation and the level of in-
corporation of other traffic control locations, i.e. isolated and 
coordinated strategies; (c) the queue accumulation procedure 
which is used, and therefore strategies can be applicable to 
undersaturated and/ or oversaturated conditions. The strate-
gies which do not take into consideration the queue build-up 
effects and the dissemination of the queue, cannot describe the 
oversaturated traffic conditions accurately especially for an 
extended period of time. The optimization of traffic control 
strategies and the traffic assignment are highly interdependent 
especially in congested networks, therefore their combination 
is necessary in order to eliminate inconsistencies and to pro-
vide solutions that enhance the performance of the network. 
The combined user equilibrium traffic assignment and signal 
optimization problem is defined as the optimization of traffic 
signals while users choose their routes according to the equi-
librium principles [10]. The combined problem has been inves-
tigated by many researchers over the past years in its static 
formulation (e.g. [11],[12],[13]) and in its dynamic extension 
(e.g. [14],[15],[16]). 

DSS focusing on developing a suitable traffic signal control 
strategy for a network have been proposed over the years. 
Choy et al. [17] presented a cooperative, hierarchical, 
multiagent system for real-time traffic signal control of a com-
plex traffic network divided into subproblems, each of them 
handled by an intelligent agent with a fuzzy neural decision 
making-module. Chen et al. [18] developed a systematic 
framework for implementing and evaluating traffic signal op-
erations under severe weather conditions by evaluating the 
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most suitable plans based on a set of pre-defined timing plans. 
Hashemi and Abdelghany [19] presented a real-time traffic 
network state estimation and prediction system with built-in 
decision support capabilities for selecting efficient traffic man-
agement schemes for recurrent and non-recurrent congestion 
based on a meta-heuristic search mechanism for constructing 
the schemes by integrating a wide variety of control strategies 
which are pre-approved, such as set of pre-approved timing 
plans for all intersections, diversion messages along dynamic 
signs, ramp metering rates for the different freeway ramps, 
pricing scenarios of toll facilities, etc. Their work was extended 
in [20] where the objective was to develop robust traffic man-
agement schemes such that the network overall performance 
remains close to optimality under all possible future opera-
tional conditions (e.g. demand level, road closures, weather, 
etc.). Their decision support module adopted a meta-heuristic 
search algorithm for determining the most robust traffic net-
work management scheme considering the uncertainty in the 
network operational scenarios expressed by the mean value 
and variance of the network performance (i.e. the total travel 
time) estimated through a dynamic traffic assignment (DTA) 
simulation-based model. 

In this paper, we present a framework for a Decision Sup-
port System to help Traffic Control Centers on the analysis of 
the risk of a transport system performance and the develop-
ment of traffic control methods in an urban area, by taking 
into account methods and strategies for analyzing and limiting 
the system performance risk. In this context it is necessary to 
use tools simulating the traffic conditions under dynamic 
loading so that the analysis takes into account the important 
evolution of dynamic conditions prevailing in the network 
and the available routes that the users of the network choose 
accordingly. In addition, a dynamic mesoscopic approach 
provides a platform for the implementation of online and of-
fline traffic control strategies and is used by many traffic con-
trol systems in the industry as well as in research applications. 
The approach followed the concept of Conditional Value-at-
Risk (CVaR) for the analysis of both the network performance 
and the optimization of traffic control. CVaR is a widely used 
risk quantification and prediction measure developed in the 
context of financial activities with applications to other re-
search fields. Our research contributions are in the following 
subjects: 

• The proposed DSS evaluates the system performance 
based on a risk analysis of excess travel times using a 
dynamic mesoscopic traffic assignment simulation 
model and generates proactive traffic control plans that 
are consistent with both the anticipated network condi-
tions and drivers’ route choice behavior.  

• The optimization of the traffic signal plans in the net-
work is performed using a multi-objective genetic algo-
rithm which minimizes the risk of delays in the signal-
ized intersections and the risk of non-coordinated pre-
defined routes of the network, analyzing the traffic dy-
namics in the context of risk. 

• Both the optimization algorithm and the mesoscopic 
model include detailed description of the geometric 
and operational characteristics of the signalized inter-

sections. 
• The optimization of the traffic signal plans is based on 

the procedure of multiple period analysis of the High-
way Capacity Manual 2010 [21].  

To our knowledge, there is only one paper [20] which deals 
with the risk minimization in a DSS framework evaluating 
traffic plans. In that case, the risk is defined using the mean 
value and the variation of the performance measure estimated 
from different operational cases in order to evaluate prede-
fined timing plans. In our case, both the optimization of traffic 
plans and the evaluation of the system is based on a risk anal-
ysis of a coherent risk measure (CVaR), which is defined as a 
metric for the performance for the delays experiencing by us-
ers within the analysis period.   

The paper is organized as follows: the next section provides 
information about the risk analysis adopted in the context of 
this work, the third section describes the proposed DSS and 
the optimization methodology for finding the optimal traffic 
signal settings in an urban network. The application of the 
proposed methodology in a referenced network and the sensi-
tivity analysis performed to the alternative solutions com-
pared to the results obtained through the benchmark tool 
TRANSYT-7F (a genetic algorithm optimization of cycle 
length, phasing sequence, splits, and offsets) are presented in 
the sections 4 and 5.  Finally, the main conclusions are sum-
marized in the last section with some remarks on future re-
search. 

2 RISK ANALYSIS 
The international standard [22] defines risk as ‘the effects of 
uncertainty on objectives’ and therefore in its broadest terms 
risk is defined as the combination of the probability of a situa-
tion and the extent of its consequences. Risk management is 
the process of analyzing and identifying uncertainties that are 
important risk factors as well as designing and implementing 
measures and strategies to limit these factors. In each system 
there are events that may have a positive or a negative effect 
on their consequences. The usual practice in risk analysis is to 
take into account the negative consequences that a system may 
have and attempt to prevent, as well as to reduce these nega-
tive consequences. 

In the late 1980s, major financial institutions, regulatory au-
thorities and the academic community were interested in de-
veloping a Market Risk model, driven by major financial cri-
ses, largely due to the lack of risk analysis and risk manage-
ment methods. Risk measures, according to [23], are classified 
into two categories: the dispersion and the downside risk 
measures. Dispersion measures quantify the dispersion of the 
estimated value around the expected value. Such measures are 
the variance and standard deviation, the absolute deviation 
and the absolute moment. Since most important in the portfo-
lio optimization is the results that are short of expectations, 
researchers have proposed the downside risk measures. Such 
measures are the lower-partial moment measure, the semi-
variance and quantile-based measures, like Value-at-Risk 
(VaR) and Conditional Value-at-Risk (CVaR) models, which 
are widely used in financial applications. VaR is a quantile-
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based risk measure which was developed and adopted in re-
sponse to financial disasters. VaR determines the level of ex-
posure of a position (portfolio or investment) which will not 
be exceeded over a specific period of time and can be inter-
preted as the maximum level of loss that is expected and ac-
cepted at financial activities. Thus, VaR of a portfolio for a giv-
en confidence level, α, is the smallest number r such that the 
probability of the portfolio loss R to exceed r is at most (1 - α). 
VaR is not considered as a coherent risk measure [25], because 
it is not affected by the tail of the distribution. So, CVaR, was 
introduced by [26] and [27], which approximates the average 
of the worst-case loss scenarios, in order to cover the short-
comings of VaR. Hence, VaR answers the question ‘how bad 
the conditions are?’, while CVaR answers the question ‘if the 
conditions are bad, how much is the expected loss?’. The fol-
lowing figure demonstrates the relationship between these 
two measures. 

 
Fig. 1. Graphical representation of VaR and CVaR 

According to [26], CVaR is better than VaR in optimization 
applications, because it provides convexity and therefore it 
can be solved as a linear programming problem for continu-
ous or discrete samples. Also, the estimation of CVaR incorpo-
rates the potential losses in the tail and not only the probabi-
lity of the tail. So, if higher values are observed in the tail be-
yond the level of confidence, CVaR is affected by those values, 
whereas VaR isn’t. 

In the proposed risk analysis of the traffic network perfor-
mance, we define as losses the loss of travel time correspond-
ing to the delay that a user is experiencing over a certain peri-
od of time. Thus, in the case of the signalized network, the 
VaR for a confidence level α is the value r that the travel time 
losses (due to delays), TTL, will not exceed this value with a 
probability less than or equal to (1-α). Correspondingly in our 
case, CVaR for a confidence level α is the expected loss in trav-
el time due to delays throughout the analysis period when 
VaR is exceeded.  

Rockafellar and Uryasev provide the following definition of 
CVaR and proof that CVaR is a coherent measure in [26]. Let 
f(x,y) be the loss of capital value or time (i.e. delay) associated 
with the decision vector x, which is selected from a subset 
X∈Rn, and the random variables vector y∈Rm. The portfolio 
combination or the traffic signal settings is represented by x, 
with X representing all available portfolios combinations or all 
available traffic signal settings subject to certain constraints. 

Vector y is representing the uncertainties that can affect the 
loss, such as market parameters or demand flow in our case. 
For each x, the loss f(x,y) is a random variable with a distribu-
tion in ℝ, affected by y. The underlying probability distribu-
tion of y is considered to have density p(y), which is not re-
quired to be analytically estimated as proved by [26]. The 
probability that f(x,y) will not exceed the lower bound r is 
given by: 
Ψ(x,r)=∫ p(y) dyf(x,y)≤r  (1) 
which is a cumulative distribution function of the loss with 
respect to x. Generally, Ψ(x,r) is a non-decreasing function 
with respect to r and it is considered to be continuous. The 
VaRa and CVaRa for the random variable of the loss associated 
with x at the confidence level a is given by 
VaRα=min{ r∈R : Ψ(x,r) ≥ a }  (2) 
CVaRa=

1
�1-a� ∫ f(x,y)p(y)dyf(x,y)≥VaRa

 (3) 

Rockafellar and Uryasev [27] formed the following expres-
sion for CVaRa in terms of function Fa on X×R and proved that 
it is superior because it provides convexity and it can be 
solved as a linear programming problem for discrete samples, 
as well, by sampling the probability distribution of y accord-
ing to its density p(y) and generating a collection of [y1,…,yq] 
vectors with probabilities pk and including in the decision var-
iables the VaRα = 𝜉: 
Fa� (x,ξ)=ξ+ 1

�1-a�
∑ pkmax �f �x,ym�-ξ,0�q

m=1  (4) 

CVaR has been used in traffic control optimization by other 
researchers, in order to capture the day-to-day variations in 
traffic demand ([28],[29],[30],[31],[32]) and to provide a robust 
traffic signal plan taking account the uncertainty of demand 
estimation in the optimization. In this paper, the CVaR is used 
in a different context, capturing the uncertainty in delays ex-
periencing by the users in a planning horizon, extending the 
work presented in [33] for an isolated intersection to a coordi-
nated network in the framework of DSS. 

3 DECISION SUPPORT SYSTEM FRAMEWORK 
In general, a DSS for traffic management consists of the fol-
lowing tasks (Fig.2): 

• Monitoring the state of the network, i.e. collecting and 
storing data reflecting the state and performance of the 
network. The data are processed and used for the de-
tection and recognition of traffic flow patterns. Raw 
and processed data, traffic flow patterns and Origin-
Destination matrices are stored in the DSS database.  

• Predicting the state and performance of the network 
using analytical or/and simulation models based on 
real-time data and/or historical data. The demand and 
the network is calibrated and validated employing a 
simulation based model for mesoscopic dynamic traffic 
assignment. 

• Formulating, testing and selecting strategy for mitigat-
ing traffic congestion. 

• Implementing and evaluating the selected strategy. A 
risk analysis of the system performance with the im-
plemented strategy is performed in order to improve 
and correct the activities involved in the demand pre-
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diction and the planning tools.  
Our research is focused on the activities involved with the 

traffic control strategy formulation, testing and selection with-
in the framework of a DSS for traffic management, which can 
be used for optimizing the traffic control parameters and as-
sessing the performance of the network in order to provide to 
the operators a planning tool for the risk management of the 
users’ delay. Our proposed Planning Tool contains five tasks 
(Fig.2): 

• The transport system representation components, 
where all the attributes of the network are coded for 
importing in the mesoscopic Dynamic Traffic Assign-
ment (mDTA) and in the optimization algorithm. The 
attributes include the temporal Origin-Destination (O-
D) demand, the physical characteristics of the network 
(i.e. intersections, links, lanes, etc.) and the operational 
characteristics (i.e. signal plans, parking restrictions, 
traffic management schemes, etc.). 

• The system performance evaluation, where the actions 
for performing a mDTA is included based on the sys-
tem’s characteristics for an extended peak period (i.e. 
three hours). The mDTA is performed using the 
AIMSUN microsimulation model in order to assign the 
users to the network based on dynamic user equilibri-
um.  

• The risk analysis of the performance of the system, 
where the CVaR of the travel time losses by users due 
to delays during the extended peak period is estimated 
and compared to previous solutions. Based on “(2)”-
“(3)”, we have formed an equivalent definition of the 
CVaR of the average delay of users: 
VaRα=min{ r∈R : Pr(TTL>r) ≥ a } (5) 
CVaRa=

1
�1-α�

∑ piTTLii:TTLi≥VaRa  (6) 

where VaRa at confidence level α is the value r (i.e. us-
ers’ delay) such that the probability that the travel time 
losses by users (TTL) will exceed r is not more than (1- 
α); CVaRa is the expected delay which exceeds the re-
spective VaRa at the same confidence interval; TTLi is 
the average travel time losses by users due to delays, 
which are estimated for every interval i of the analysis 
period; and pi is the probability of each average TTLi to 
be experienced by the users which is taken as the ratio 
of the demand experiencing this TTLi over the total de-
mand of the entire analysis period. 

• The traffic control strategy is selected based on the 
minimum value of CVaR of travel time losses accrued 
to network users due to delays during the extended 
peak period, as estimated by “(5)” and “(6)”. 

• The traffic control optimization algorithm (mGA-
CVaR) solving an anticipatory signal control optimiza-
tion problem for an extended peak period, where its ul-
timate objective is to find the optimal network signal 
parameters which minimize the risk of delays of the 
users based on the dynamically assigned traffic flows. 
The network signal parameters refer to the green times 
of the phases of the signalized intersections’ plans and 
the offsets for their efficient coordination. The problem 
is solved using a multiobjective optimization by mini-

mizing the CVaR of average delays at intersections and 
the CVaR of average losses due to non-coordination of 
predefined routes. 

 
Fig. 2. Proposed Decision Support System 

The proposed optimization method (mGA-CVaR) uses as 
solution algorithm the multiobjective genetic algorithm func-
tion gamultiobj in Matlab R2014a. The objectives have as deci-
sion variables the green times of all signal phases and the off-
sets of the signal plans of network intersections and they are 
described in the following. 

The first objective function refers to the mesoscopic delay 
experienced by users from all signalized intersections. The 
algorithm minimizes the CVaR of average delay though the 
entire simulation horizon, which is estimated for all intersec-
tions at each interval based on the U.S. Highway Capacity 
Manual HCM2010 [21] formula for multiple period analysis. 
The estimation of delay for the multiple-period analysis is ex-
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pressed by the following formula: 

di,lg,n=d1i,lg,n+900 T ��Xi,lg,n-1�+��Xi,lg,n-1�2 + 
 8 k  l Xi,lg,n

ci,lg,n T � + 

+ 3600
ui,lg,n T

 ( tA,i,lg,n
Qb,i,lg,n+ Qe,i,lg,n- Qeo,i,lg,n

2
+

Qe,i,lg,n
2 + Qoe,i,lg,n

2

2cA,i,lg,n
 - 

Qb,i,lg,n
2

2cA,i,lg,n
 ) (7) 

where T is the duration of interval i, k is the incremental delay 
factor, l is the upstream filtering/metering adjustment factor  
and for each lane group, lg, and for all intersections n, at each 
period i: di,lg,n is the average vehicle delay, d1i,lg,n is the uni-
form delay, gi,lg,n is the effective green time, Xi,lg,n is the ratio of 
traffic flow over capacity, ci,lg,n is the capacity, ui,lg,n is the traf-
fic flow, tA,i,lg,n is the adjusted duration of unmet demand in 
the i-th period, Qb,i,lg,n is the initial queue at the beginning of 
the i-th period, Qe,i,lg,n is the initial queue at the end of the i-th 
period, Qeo,i,lg,n is the initial queue at the end of the 𝑖-th period 
when ui,lg,n > cA,i,lg,n and   Qb,i,lg,n=0, cA,i,lg,n is the average capaci-
ty during the i-th period.  

The above mentioned variables of each lane group is esti-
mated according to the same methodology [21], depending on 
the type of movement (e.g. protected or permitted, shared or 
exclusive, etc.) and the geometric and traffic characteristics 
(e.g. lane width, HGV percentage, parking maneuvers, etc.). 
Especially in the case of permitted movements, the variables 
have an additional dynamic complexity due to the different 
demand levels occuring each period.  

The network average vehicle delay (s/veh) at the i-th peri-
od is: 
di  =  ∑  ui,lg,n di,lg,nlg,n ∑  ui,lg,nlg,n�  (8) 

Therefore the first objective function is: 
CVaR-da=ξd+ 1

�1-a�
∑ pd,imax� �di-ξd,0�I

i=1  (9) 

where ξd is an additional variable corresponding to the VaR of 
the average delay and pd,i is the probability of each delay level, 
which is taken as the ratio of the demand during the period i 
over the demand of the entire analysis horizon, I.   

The second objective function is constructed for finding the 
optimal offsets and is the minimum CVaR of the number of 
vehicles travelling through the predefined routes without 
stopping (SV). This is based on the primary principles of the 
bandwidth optimization developed by [34], where the band-
width Βr for the route r of the network is estimated through 
the lower, ΙL,nr

  r , and upper, ΙU,nr
 r , interferences of the coordinat-

ed phases of nodes, nr, in the r-th route and the minimum 
green time, Gmin

r , of the coordinated phases in the r-th route: 
Βr=Gmin

r -�max∀r ΙU,nδ
 r + max∀nr ΙL,nr

 r � (10) 
The loss from not having coordinated routes at period i 

along all routes of the network is given by: 
 𝑆𝑉𝑖=∑ 𝑢𝑖𝑟 �1- Βr C⁄ �𝑟 ∑ 𝑢𝑖𝑟𝑟�  (11) 
where C is the cycle length and 𝑢𝑖𝑟 is the demand along route r 
during period i. 

Therefore the second objective function is: 
CVaR-SVa=ξSV+ 1

�1-a�
∑ pSV,imax� �SVi-ξSV,0�I

i=1  (12) 

where ξSV is an additional variable corresponding to the VaR 

of the SV and pSV,i is the probability of each loss to happen, 
which is taken as the ratio of the routes’ demand during the 
interval i over the routes’ demand for the entire horizon, I.   

The general formulation of the optimization problem is as 
follows: 
min

x,ξd,ξSV
�CVaR-da�x,ξd�;CVaR-SVa�x,ξSV�� (14) 

subject to the following constraints: 

⎩
⎪⎪
⎨

⎪⎪
⎧ Cmin  ≤ ∑ Lφ

n  Nφ
n +∑ gφ

n
Nφ

n  ≤ Cmax

𝐿𝑏   ≤  𝑔𝜑
𝑛  ≤  𝑈𝑏

0  ≤  𝑜𝑛  ≤ 𝐶
−𝐺𝑚𝑖𝑛𝑟 < 𝛪𝐿,𝑛𝑟

𝑟 < 𝐺𝑚𝑖𝑛𝑟

−𝐺𝑚𝑖𝑛𝑟 < 𝛪𝑈,𝑛𝑟
𝑟 < 𝐺𝑚𝑖𝑛𝑟

0 ≤ 𝛣𝑟 ≤ 𝐺𝑚𝑖𝑛𝑟 ⎭
⎪⎪
⎬

⎪⎪
⎫

 (15) 

where x=[g, o ] is the vector containing the decision variables 
of the problem; g is the vector containing the duration of green 
time, gφ

n , of the Nφ
n  phases of all nodes n; o is the vector 

containg the offsets of all nodes n; Cmin and Cmax are the mini-
mum and maximum cycle length; Lφ

n  is the lost time of each 
phase φ �φ∈Nφ

n� for each node n; Lb,  Ub are the lower and up-
per bounds of green time duration.  

4 APPLICATION OF METHODOLOGY 
The proposed methodology (mGA-CVaR) of traffic signal op-
timization by minimizing the risk of delay at a mesoscopic 
level was implemented for a reference network. The mGA-
CVaR approach was compared with the traffic signal settings 
obtained using the TRANSYT-7F as the Traffic Control Opti-
mization task in Fig.2. Also, the Risk Analysis task (Fig.2) of 
the proposed approach was replaced by the comparison of the 
network’s mean delay throughout the simulation horizon as 
simulated in mDTA with the TRANSYT-7F settings, in order 
to compare the proposed risk approach to a classic approach. 

4.1 Test Network 
The test network has 13 nodes, 28 links (one-way), 22 Origin-
Destination (O-D) pairs and 18 signal groups at 6 signalized 
intersections, as described by Allsop & Charlesworth [35]. The 
mirrored layout of the network and the traffic signals plans of 
each intersection are depicted in Figure 3. The network was 
analyzed into four routes, which were included in the optimi-
zation process for finding the best offsets. The selected routes 
connect all network centroids in a way that all intersections 
are included at least on two routes. The route selection was 
also based on the most critical O-D pairs.  Route 1 has two 
directions connecting the intersections: {1-2-3-4}. Route 2 has 
two directions connecting the intersections: {1-6-5-4}. Route 3 
has one direction connecting the intersections: {6-2}. Route 4 
has one direction connecting the intersections: {3-5}. 

4.2 Demand Distribution 
In this paper the analysis period of the network traffic condi-
tions is performed for an extended peak period of three hours, 
which is a typical period for implementing a fixed time signal 
plan at urban areas. The referenced demand is representing 
the peak hour as reported in [35]. The temporal distribution of 
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the demand for the extended peak period was derived by as-
suming a log-normal distribution for the morning period and 
using appropriate factors in order the total number of trips for 
the peak hour to be 5000 vehicles, as in [35]. Thus, the total 
number of trips for the extended peak period was 10880 vehi-
cles. 

 
Fig. 3. Mirrored layout of Allsop and Charlesworth’s network [35] 

4.3 Model Setup 
The dynamic mesoscopic assignment was performed in 
AIMSUN 8.2.1, calculating the costs every 5min and used for 
the Dynamic User Equilibrium the Gradient-Based model. The 
optimization algorithm for finding the best signal timings and 
the associated offsets was implemented in Matlab R2014a for 
the proposed method and in TRANSYT-7F for comparison. 
The duration of the interval in the proposed optimization pro-
cedure is 5min, in order to provide fine resolution to the traffic 
performance of the network without creating instability issues 
resulting from the variations of the cycle length. The optimiza-
tion in TRANSYT-7F followed the multiple period approach 
by analyzing the entire period into 20min intervals, due to 
software limitations. The parameters and constraints of the 
optimization procedure are set to the following values: 

• Lower cycle time: 50s,  
• Upper cycle length: 150s,  
• Minimum phase green time: 7s,  
• Intergreen time: 5s,  

• Coordination speed: 50km/h 
• Confidence level for CVaR: 0.9 
The initial traffic signal plans for the intersections were ob-

tained by [12], which having 70s cycle length and equally dis-
tributed green times to phases. 

4.4 Results 
The comparative results between the alternative approaches 
were analyzed based on the data obtained from the mDTA, 
analyzing the overall average network delay, the total travel 
time and the CVaR of the average network delay (Table 1). The 
mGA-CVaR solution provides 33.9s/km overall average net-
work delay, 291.5h total travel time and 38.3s/km CVaR. The 
TRANSYT-7F solution increases the average network delay by 
4.2% (35.4s/km), the total travel time by 3.7% (302.8h) and the 
CVaR of average network delay by 6.6% (38.3s/km) compared 
to mGA-CVaR. Figure 4 presents the time variation of the av-
erage network delay at each interval through the simulation 
horizon from the implementation of the solution of the two 
approaches, where it can be seen that there is a decrease in the 
maximum values of the average delay per interval with the 
mGA-CVaR solution. This reduction in the maximum average 
delay values observed, when the highest number of vehicles is 
loaded in the network, is the most important advantage of the 
proposed method. This reduction is important not only be-
cause it is experienced by a high percentage of vehicles, but 
mainly because it prevents the occurrence of high values of 
delays in the system, which are not easily manageable and 
reversible during an unexpected event that may cause in-
creased demand or reduced network capacity.  

 
Fig. 4. Average network delay per interval for basic demand scenario 

We have, also, performed the same comparison between 
the solutions provided by mGA-CVaR and TRANSYT-7F for 
an increased demand of 20%, in order to capture the benefits 
of our approach in a more congested network. The indices of 
the resulting performance with the two solutions were com-
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pared between the two methods and between the basic scena-
rio. The results are presented in Table 1, where it can be seen 
that in the higher demand scenario the benefit of optimizing 
traffic signals with the proposed methodology of risk minimi-
zation is higher comparing to the TRANSYT-7F solution. An-
other interesting finding is that the increase in the values of 
indices at the higher demand scenario is greater with the 
TRANSYT-7F solution compared to our methodology, satisfy-
ing thus our hypothesis that the risk minimization approach 
provides lower risk of experiencing high levels of demand 
especially when the network is oversaturated.  

TABLE 1 
RESULTS OF BASIC AND HIGHER DEMAND SCENARIOS 

Sce
nari

o 

Optimiza-
tion ap-
proach 

Overall Av. 
Network Delay 

(s/km) 

Total 
travel 

time (h) 

CVaR Av. 
Network  

Delay (s/km) 

Ba
si

c 
 

D
em

an
d mGA-CVaR 33.94 291.52 38.34 

TRANSYT 35.43 302.81 38.34 
Comparison  -4.2% -3.7% -6.6% 

H
ig

he
r  

D
em

an
d mGA-CVaR 39.60 374.87 48.15 

TRANSYT 45.15 394.80 68.91 
Comparison  -12.3% -5.0% -30.1% 

Comparison between demand scenarios 

mGA-CVaR 16.68% 28.59% 25.59% 
TRANSYT-7F 27.43% 30.38% 79.73% 

The benefit in the time variation of the average network de-
lays (Fig.5) experienced by users during the peak hour is even 
more obvious in the case of a more congested network as in 
the case of the higher demand scenario, where it can be ob-
served that the peak of average delay experienced with the 
TRANSYT-7F solution presents a higher peak whereas the 
mGA-CVaR solution has a lower steady curve during peak 
hour. 

 
Fig. 5. Average network delay per interval for higher demand scenario 

5 SENSITIVITY ANALYSIS 
The basic hypothesis of our proposed methodology is that 
traffic plans designed and optimized by minimizing the CVaR 
will offer users a lower risk of experiencing higher values of 
delays. This hypothesis was be tested through a sensitivity 
analysis of different demand levels and incidents occurring at 
the network. The scenarios developed and processed in the 
sensitivity analysis are 46 and are summarized in the follow-
ing: 
1-3. Increase in total demand by 15%, 20%, 25% 
4-6. Increase during peak hour (07:30-08:30) by 15%, 20%, 

25% 
7-9. Increase in total demand by 20% for the O-D pairs 

with the highest volume {C,F},{A,D},{G,A} 
10. Increase in total demand by 20% for the O-D pairs 

with the highest volume simultaneously. 
11-14. Extension of peak hour demand by 15, 30, 45, 60min 
15-23. Lane closure for 30min during peak hour along the 

sections with two lanes 
24-28. Speed reduction to 30km/h for 30min during peak 

hour along the sections with one lane 
29-33. Speed reduction to 20km/h for 30min during peak 

hour along the sections with one lane 
34-35. Speed reduction for the entire period for the entire 

network to 30km/h and 20km/h 
36-37. Speed reduction during the peak hour for the entire 

network to 30km/h and 20km/h 
38-46. Different seed numbers  

Therefore, using the solutions from the risk minimization 
proposed algorithm, mGA-CVaR, and TRANSYT-7F, we have 
run these 46 scenarios and compared the network perfor-
mance for both levels of demand (with basic and higher de-
mand). In the basic demand level the proposed approach was 
superior compared to the TRANSYT-7F solution, since only 
two tests had higher overall and CVaR average network delay 
and one test had higher total travel time compared to the per-
formance of the network with the TRANSYT-7F solution. In 
the higher demand scenario, the proposed method was supe-
rior compared to TRANSYT-7F in all 46 tests. The performance 
indices for both demand levels for all scenarios are depicted in 
Figure 6 and 7.  

Basic statistics from the application of mGA-CVaR and 
TRANSYT-7F solutions to the 46 scenarios at both demand 
levels are presented in Table 2, where it can be seen that the 
mean value, the standard deviation, the range and the coeffi-
cient of variation of all indices are higher with the TRANSYT-
7F solution compared to the proposed method. This can be 
seen as an important element of uncertainty in the operation 
of the network in cases of diversification of demand or supply 
conditions. So, in both demand levels the main hypothesis is 
satisfied, i.e. the signal plan risk optimization ensures better 
and more stable network performance not only in the baseline 
scenarios, but also when conditions are altered either due to 
increased demand or due to incidents that affect the network 
capacity. 
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Fig. 6. Sensitivity analysis test comparison between mGA-CVaR to 
TRANSYT-7F – Basic Demand Scenario 

 
Fig. 7. Sensitivity analysis test comparison between mGA-CVaR to 
TRANSYT-7F – Higher Demand Scenario  

TABLE 2 
SENSITIVITY ANALYSIS RESULTS 

De-
mand 
Level 

Indices 

TRANSYT-7F mGA-CVaR-NSV 
Overall Av. 

Network  
Delay (s/km) 

Total travel 
time  
(h) 

CVaR  Av. 
Network  

Delay (s/km) 

Overall Av. 
Network  

Delay (s/km) 

Total travel 
time  
(h) 

CVaR  Av. 
Network  

Delay (s/km) 

Ba
si

c 
 

D
em

an
d 

 
Le

ve
l 

Average 45.8 346.2 59.2 43.1 330.7 54.5 
St. deviation 32.9 101.5 51.8 28.8 87.4 45.9 

Range 192.3 578.9 257.5 163.8 485.4 214.9 
Coefficient 
of variation 72.0% 29.3% 87.5% 66.9% 26.4% 84.3% 

H
ig

he
r  

D
em

an
d 

 
Le

ve
l 

Average 81.3 552.2 135,0 59.1 442.9 87.1 
St.deviation 70.9 257.8 110.8 48.6 111.4 91.7 

Range 396.7 1,250.1 571.1 249.7 400.8 462.1 
Coefficient 
of variation 87.2% 46.7% 82.0% 82.1% 25.1% 105.3% 
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6 CONCLUSIONS 
This paper presents a framework for a DSS to aid Traffic Con-
trol Centers in the analysis of the risk of a transport system 
performance and the development of traffic control methods 
in a signalized network. In this context we present a planning 
tool as part of the DSS for formulating, testing and selecting 
the near optimal traffic control strategy using the concept of 
Conditional Value-at-Risk (CVaR) for the assessment of the 
network performance and the optimization of traffic control 
parameters for a signalized network. The main contributions 
of our research are: 

• The proposed tool evaluates the system performance 
based on a risk analysis of excess travel times using a 
dynamic mesoscopic traffic assignment simulation 
model and generates proactive traffic control plans that 
are consistent with both the anticipated network condi-
tions and drivers’ route choice decisions.  

• The optimization of the traffic signal plans in the net-
work is performed using a multi-objective genetic algo-
rithm which minimizes the risk of delays in the signal-
ized intersections and the risk of non-coordinated pre-
defined routes of the network, analyzing the traffic dy-
namics in the context of risk. 

• Both the optimization algorithm and the mesoscopic 
model include detailed description of the geometric 
and operational characteristics of the signalized inter-
sections. 

• The optimization of the traffic signal plans is based on 
the procedure of multiple period analysis of the High-
way Capacity Manual 2010. 

The benefits of the proposed approach were demonstrated 
through an implementation in a referenced network and their 
comparison to a benchmark tool (TRANSYT-7F). The analysis 
of the performance of the network in the mesoscopic DTA 
model AIMSUN showed that the proposed approach present-
ed lower values of total delays over the entire simulation peri-
od for both demand scenarios (basic and high level). The tem-
poral analysis of the average delay showed that the proposed 
approach resulted in a decrease in the maximum values of the 
average delay per interval, which is important not only be-
cause it is experienced by a high percentage of vehicles, but 
mainly because it prevents the occurrence of high values of 
delays in the system, which are not easily manageable and 
reversible during an unexpected event that may cause a de-
mand spike or reduced network capacity. 

The basic hypothesis of our proposed methodology, which 
is that traffic plans designed and optimized by minimizing the 
CVaR will offer users a lower risk of experiencing higher val-
ues of delays, was validated through a sensitivity analysis of 
46 tests with different demand levels and incidents occurring 
at the network. 

Future research will be aimed at enhancing the perfor-
mance of the optimization algorithm in order to reach optimal 
solution faster and thus incorporating this approach in an 
online environment. An extension of our work for solving 
larger scale problems will be also investigated using clustering 

techniques for analyzing and optimizing subnetworks. 
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